Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We identify certain combinatorially defined rational functions which, under the shuffle to Schiffmann algebra isomorphism, map to LLT polynomials in any of the distinguished copies \Lambda(X^{m{,}n})\subset\mathcal{E}of the algebra of symmetric functions embedded in the elliptic Hall algebra ℰ of Burban and Schiffmann.As a corollary, we deduce an explicit raising operator formula for the ∇ operator applied to any LLT polynomial.In particular, we obtain a formula for \nabla^{m}s_{\lambda}which serves as a starting point for our proof of the Loehr–Warrington conjecture in a companion paper to this one.more » « less
-
Abstract We generalize the shuffle theorem and its $(km,kn)$ version, as conjectured by Haglund et al. and Bergeron et al. and proven by Carlsson and Mellit, and Mellit, respectively. In our version the $(km,kn)$ Dyck paths on the combinatorial side are replaced by lattice paths lying under a line segment whose x and y intercepts need not be integers, and the algebraic side is given either by a Schiffmann algebra operator formula or an equivalent explicit raising operator formula. We derive our combinatorial identity as the polynomial truncation of an identity of infinite series of $$\operatorname {\mathrm {GL}}_{l}$$ characters, expressed in terms of infinite series versions of LLT polynomials. The series identity in question follows from a Cauchy identity for nonsymmetric Hall–Littlewood polynomials.more » « less
-
Abstract We prove the extended delta conjecture of Haglund, Remmel and Wilson, a combinatorial formula for $$\Delta _{h_l}\Delta ' _{e_k} e_{n}$$ , where $$\Delta ' _{e_k}$$ and $$\Delta _{h_l}$$ are Macdonald eigenoperators and $$e_n$$ is an elementary symmetric function. We actually prove a stronger identity of infinite series of $$\operatorname {\mathrm {GL}}_m$$ characters expressed in terms of LLT series. This is achieved through new results in the theory of the Schiffmann algebra and its action on the algebra of symmetric functions.more » « less
An official website of the United States government
